Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants.
نویسندگان
چکیده
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a key enzyme that converts atmospheric carbon to food and supports life on this planet. Its low catalytic activity and specificity for oxygen leads to photorespiration, severely limiting photosynthesis and crop productivity. Consequently, Rubisco is a primary target for genetic engineering. Separate localization of the genes in the nuclear and chloroplast genomes and a complex assembly process resulting in a very low catalytic activity of hybrid Rubisco enzymes have rendered several earlier attempts of Rubisco engineering unsuccessful. Here we demonstrate that the RbcS gene, when integrated at a transcriptionally active spacer region of the chloroplast genome, in a nuclear RbcS antisense line and expressed under the regulation of heterologous (gene 10) or native (psbA) UTRs, results in the assembly of a functional holoenzyme and normal plant growth under ambient CO(2) conditions, fully shortcircuiting nuclear control of gene regulation. There was approximately 150-fold more RbcS transcript in chloroplast transgenic lines when compared with the nuclear RbcS antisense line, whereas the wild type has 7-fold more transcript. The small subunit protein levels in the gene 10/RbcS and psbA/RbcS plants were 60% and 106%, respectively, of the wild type. Photosynthesis of gene 10/RbcS plants was approximately double that of the antisense plants, whereas that of psbA/RbcS plants was restored almost completely to the wild-type rates. These results have opened an avenue for using chloroplast engineering for the evaluation of foreign Rubisco genes in planta that eventually can result in achieving efficient photosynthesis and increased crop productivity.
منابع مشابه
Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylaseyoxygenase (Chlamydomonas reinhardtiiychloroplastyinsertional mutagenesisyphotosynthesisyprotein engineering)
Ribulose-1,5-bisphosphate carboxylasey oxygenase (EC 4.1.1.39) is the key photosynthetic enzyme that catalyzes the first step of CO2 fixation. The chloroplastlocalized holoenzyme of plants and green algae contains eight nuclear-encoded small subunits and eight chloroplastencoded large subunits. Although much has been learned about the enzyme active site that resides within each large subunit, i...
متن کاملFunctional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas.
There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO(2) fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclea...
متن کاملPhotosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity1[OPEN]
Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundleshe...
متن کاملPhotosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity.
Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sh...
متن کاملDevelopment and Environmental Stress Employ Different Mechanisms in the Expression of a Plant Gene Family.
Ribulose bisphosphate carboxylase small subunit (RbcS) genes in the common ice plant, as in all higher plants, constitute a multigene family. We have measured transcription activity and steady state mRNA levels of individual members of the family, six RbcS genes, in the ice plant with emphasis on the transition from C3 photosynthesis to Crassulacean acid metabolism (CAM), which this plant under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 16 شماره
صفحات -
تاریخ انتشار 2004